Background and objectives:
Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) plays a critical role in the success of lumbar spinal fusion with autogenous bone graft. This study aims to explore the role and specific mechanism of miR-34c-5p in osteogenic differentiation of BMSCs.
Methods and results:
Rabbit model of lumbar fusion was established by surgery. The osteogenic differentiation dataset of mesenchymal stem cells was obtained from the Gene Expression Omnibus (GEO) database, and differentially expressed miRNAs were analyzed using R language (limma package). The expressions of miR-34c-5p, miR-199a-5p, miR-324-5p, miR-361-5p, RUNX2, OCN and Bcl-2 were determined by qRT-PCR and Western blot. ELISA, Alizarin red staining and CCK-8 were used to detect the ALP content, calcium deposition and proliferation of BMSCs. The targeted binding sites between miR-34c-5p and Bcl-2 were predicted by the Target database and verified using dual-luciferase reporter assay. MiR-34c-5p expression was higher in rabbit lumbar fusion model and differentiated BMSCs than normal rabbit or BMSCs. The content of ALP and the deposition of calcium increased with the osteogenic differentiation of BMSCs. Upregulation of miR-34c-5p reduced cell proliferation and promoted ALP content, calcium deposition, RUNX2 and OCN expression compared with the control group. The effects of miR-34c-5p inhibitor were the opposite. In addition, miR-34c-5p negatively correlated with Bcl-2. Upregulation of Bcl-2 reversed the effects of miR-34c-5p on ALP content, calcium deposition, and the expressions of RUNX2 and OCN.
Conclusions:
miR-34c-5p could promote osteogenic differentiation and suppress proliferation of BMSCs by inhibiting Bcl-2.
Keywords:
BMSCs; Bcl-2; Osteogenic differentiation; Proliferation; miR-34c-5p.