. 2021 Aug 16;1-7.
doi: 10.1080/10255842.2021.1966625.
Online ahead of print.
Affiliations
Affiliations
- 1 Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak, Paris, France.
- 2 Neurosurgery, Spine Unit, CHU, Nice, France.
- 3 Département Othopédie Pédiatrique, Hôpital des Enfants, Purpan, Toulouse Université, France.
- 4 Orthopedic Surgery, Spine Unit, Clinique Geoffroy Saint-Hilaire, Paris, France.
Item in Clipboard
A Gennari et al.
Comput Methods Biomech Biomed Engin.
.
Display options
Format
. 2021 Aug 16;1-7.
doi: 10.1080/10255842.2021.1966625.
Online ahead of print.
Affiliations
- 1 Arts et Metiers ParisTech, Institut de Biomecanique Humaine Georges Charpak, Paris, France.
- 2 Neurosurgery, Spine Unit, CHU, Nice, France.
- 3 Département Othopédie Pédiatrique, Hôpital des Enfants, Purpan, Toulouse Université, France.
- 4 Orthopedic Surgery, Spine Unit, Clinique Geoffroy Saint-Hilaire, Paris, France.
Item in Clipboard
Display options
Format
Abstract
The objective was to compare L4/5 range of motions of fusion constructs using anchored cages. Twelve human cadaveric spine were tested in intact condition, and divided into TLIF and PLIF groups. Testing consisted in applying pure moments in flexion-extension, lateral bending and axial rotation. The computation of intersegmental motion was assessed using 3 D biplanar radiographs. In TLIF group, the addition of contralateral transfacet decreased flexion-extension motion (39%; p = 0.036) but without difference with the ipsilateral pedicle screw construction (53%; p = 0.2). In PLIF group, the addition of interspinous anchor reduced flexion-extension motion (12%; p = 0.036) but without difference with the bilateral pedicle screw construction (17%; p = 0.8).
Keywords:
Lumbar spine; arthrodesis; interspinous anchor; spine biomechanics; transfacet screw.