CT Hounsfield Units as a predictor of reoperation and graft subsidence following standalone and multi-level lateral lumbar interbody fusion


Introduction:

Standalone single and multi-level lateral lumbar interbody fusion (LLIF) are increasingly being applied to treat degenerative spinal conditions in a less invasive fashion. Graft subsidence following LLIF is a known complication and has been associated with poor bone mineral density (BMD). Previous research has demonstrated the utility of CT Hounsfield Units (HU) as a surrogate for BMD. This study aims to investigate the relationship between CT HU and subsidence and reoperation after standalone and multi-level LLIF.


Methods:

A prospectively-maintained single-institution database was retrospectively reviewed for LLIF patients from 2017-2020 including single and multi-level standalone cases with or without supplemental posterior fixation. Data on demographics, graft parameters, BMD on DEXA, preoperative mean segmental CT HU, and postoperative subsidence and reoperation, were collected. Three-foot standing radiographs were used to measure preoperative global sagittal alignment and disc height, and subsidence at last follow-up. Subsidence was classified using the Marchi grading system corresponding to disc height loss: Grade 0: 0-24%; I: 25-49%; II: 50-74%; III: 75-100%.


Results:

Eighty-nine LLIF patients met study criteria, with mean follow-up 19.9 ± 13.9 months. Among the 54 patients who underwent single-level LLIF, mean segmental HU was 152.0 ± 8.7 in 39 patients with Grade 0 subsidence, 136.7 ± 10.4 in nine with Grade I subsidence, 133.9 ± 23.1 in three with Grade II subsidence, and 119.9 ± 30.9 in three with Grade III subsidence (p=0.032). In the 96 instrumented levels in 35 patients who underwent multi-level LLIF, 85 had Grade 0 subsidence, 9 Grade I, 1 Grade II, and 1 Grade III, with no differences in HU. In multivariate logistic regression, increased CT HU was independently associated with a decreased risk of reoperation in both single-level and multi-level LLIF (OR:0.98, 95%CI:0.97-0.99, p=0.044; and OR:0.97, 95%CI: 0.94-0.99, p=0.017, respectively). Overall BMD on DEXA was not associated with graft subsidence nor reoperation. Using a receiver-operating-characteristic curve to establish separation between patients requiring reoperation and those that did not, the determined threshold HU for single-level LLIF was 131.4 (sensitivity 0.62, specificity 0.65), and for multi-level was 131.0 (sensitivity 0.67, specificity 0.63).


Conclusions:

Lower CT HU are independently associated with an increased risk of graft subsidence following single-level LLIF. In addition, lower CT HU significantly increased the risk of reoperation in both single and multi-level LLIF with a critical threshold of 131 HU. Preoperative CT HU may provide a more robust gauge of local bone quality and the likelihood of graft subsidence requiring reoperation following LLIF, than overall BMD.


Keywords:

Lateral lumbar fusion; bone mineral density; graft subsidence; minimally-invasive fusion.

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on vk
VK
Share on pinterest
Pinterest
Close Menu