Objective:
Intervertebral devices are increasingly utilized for fusion in the lumbar spine, along with a variety of bone graft materials. These various grafting materials often have substantial cost burdens for the surgical procedure, although they are necessary to overcome the limitations in healing capacity for many traditional interbody devices. The use of bioactive interbody fusion devices, which have demonstrable stimulatory capacity for the surrounding osteoblasts and osteoprogenitor cells and allow for osseointegration, may reduce this heavy reliance on osteobiologics for achieving interbody fusion. The objective of this study was to evaluate the rate of successful interbody fusion with a bioactive lateral lumbar interbody titanium implant with limited volume and low-cost graft material.
Methods:
The authors conducted a retrospective study (May 2017 to October 2018) of consecutively performed lateral lumbar interbody fusions with a bioactive 3D-printed porous titanium interbody device. Each interbody device was filled with 2-3 cm3/cage of a commercially available ceramic bone extender (β-tricalcium phosphate-hydroxyapatite) and combined with posterior pedicle screw fixation. No other biological agents or grafts were utilized. Demographic, clinical, and radiographic variables were captured. Fusion success was the primary endpoint of the study, with graft subsidence, fixation failure, and patient-reported outcomes (Oswestry Disability Index [ODI] and visual analog scale [VAS]-back and -leg pain scores) collected as secondary endpoints. The authors utilized a CT-based fusion classification system that accounted for both intervertebral through-growth (bone bridging) and ingrowth (integration of bone at the endplate-implant interface).
Results:
In total, 136 lumbar levels were treated in 90 patients. The mean age was 69 years, and 63% of the included patients were female. Half (50.0%) had undergone previous spinal surgery, and a third (33.7%) had undergone prior lumbar fusion. A third (33.7%) were treated at multiple levels (mean levels per patient 1.51). One year after surgery, the mean improvements in patient-reported outcomes (vs preoperative scores) were -17.8 for ODI (p < 0.0001), -3.1 for VAS-back pain (p < 0.0001), and -2.9 for VAS-leg pain (p < 0.0001). Bone bridging and/or appositional integrity was achieved in 99.3% of patients, including 97.8% who had complete bone bridging. No fixation loosening or implant failure was observed at any segment. Low-grade graft subsidence (Marchi grade ≤ I) occurred in 3 levels (2.2%), and intraoperative endplate violation occurred twice (1.5%). High-grade subsidence was not found. No implant failure or revision surgery for pseudarthrosis/subsidence was necessary.
Conclusions:
The use of bioactive titanium interbody devices with a large surface footprint appears to result in a very high rate of effective fusion, despite the use of a small volume of low-cost biological material. This potential change in the osteobiologics required to achieve high fusion rates may have a substantially beneficial impact on the economic burden inherent to spinal fusion.
Keywords:
3D printing; fusion grading; lateral lumbar interbody fusion; porous titanium; titanium interbody.