Purpose:
Previous work has demonstrated the high accuracy of augmented reality (AR) head-mounted displays for pedicle screw placement in spinal fusion surgery. An important question that remains unanswered is how pedicle screw trajectories should be visualized in AR to best assist the surgeon.
Methodology:
We compared five AR visualizations displaying the drill trajectory via Microsoft HoloLens 2 with different configurations of abstraction level (abstract or anatomical), position (overlay or small offset), and dimensionality (2D or 3D) against standard navigation on an external screen. We tested these visualizations in a study with 4 expert surgeons and 10 novices (residents in orthopedic surgery) on lumbar spine models covered by Plasticine. We assessed trajectory deviations ([Formula: see text]) from the preoperative plan, dwell times (%) on areas of interest, and the user experience.
Results:
Two AR visualizations resulted in significantly lower trajectory deviations (mixed-effects ANOVA, p<0.0001 and p<0.05) compared to standard navigation, whereas no significant differences were found between participant groups. The best ratings for ease of use and cognitive load were obtained with an abstract visualization displayed peripherally around the entry point and with a 3D anatomical visualization displayed with some offset. For visualizations displayed with some offset, participants spent on average only 20% of their time examining the entry point area.
Conclusion:
Our results show that real-time feedback provided by navigation can level task performance between experts and novices, and that the design of a visualization has a significant impact on task performance, visual attention, and user experience. Both abstract and anatomical visualizations can be suitable for navigation when not directly occluding the execution area. Our results shed light on how AR visualizations guide visual attention and the benefits of anchoring information in the peripheral field around the entry point.
Keywords:
Cognitive load; Eye tracking; Mixed reality; Surgical navigation; Usability.