Purpose:
Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) is commonly used to treat degenerative lumbar spinal disorders. It facilitates a full-scale spinal decompression and interbody fusion with minimal neural retraction using the tubular retractor system. Despite the benefits of surgical efficiency and minimalism, this technique requires a long learning curve. There is currently no consensus on the learning curve characteristics and proper training methods for MI-TLIF. Thus, this systematic review aimed to discuss the cutoff point at which technical proficiency is achieved and ways to enhance the learning process.
Methods:
Major databases, including PubMed, Embase, and Cochrane Library, were searched for learning curve studies that have evaluated the clinical outcome and learning progress of MI-TLIF using quantitative data. The qualities of the selected studies were assessed using the Newcastle‒Ottawa scale. The plateau points in the “learning curve” were analyzed according to various outcome measures.
Results:
Nine full-text articles, representing 753 cases, were included from 9743 screened studies. The most commonly used outcome measures were the operative time, followed by the complication rate. The mean cutoff point for the operative time was 31.33 ± 11.98 (range 13‒45) cases.
Conclusion:
The plateau point in the learning curve for MI-TLIF may differ according to the outcome measures used. Most studies have demonstrated the learning progress based on simple task efficiency, rather than patient outcomes. Moreover, the learning rate may be affected by the patients’ and technical conditions. Therefore, great care is required in interpreting the learning curve and cutoff point for MI-TLIF proficiency.
Keywords:
Interbody fusion; Learning curve; Lumbar; Minimally invasive; Transforaminal.