Objective:
The authors have provided a review of radiographic subsidence after lateral lumbar interbody fusion (LLIF) as a comparative analysis between titanium and polyetheretherketone (PEEK) cages. Many authors describe a reluctance to use titanium cages in spinal fusion secondary to subsidence concerns due to the increased modulus of elasticity of metal cages. The authors intend for this report to provide observational data regarding the juxtaposition of these two materials in the LLIF domain.
Methods:
A retrospective review of a prospectively maintained database identified 113 consecutive patients undergoing lateral fusion for degenerative indications from January to December 2017. The surgeons performing the cage implantations were two orthopedic spine surgeons and two neurosurgeons. Plain standing radiographs were obtained at 1-2 weeks, 8-12 weeks, and 12 months postoperatively. Using a validated grading system, interbody subsidence into the endplates was graded at these time points on a scale of 0 to III. The primary outcome measure was subsidence between the two groups. Secondary outcomes were analyzed as well.
Results:
Of the 113 patients in the sample, groups receiving PEEK and titanium implants were closely matched at 57 and 56 patients, respectively. Cumulatively, 156 cages were inserted and recombinant human bone morphogenetic protein-2 (rhBMP-2) was used in 38.1%. The average patient age was 60.4 years and average follow-up was 75.1 weeks. Subsidence in the titanium group in this study was less common than in the PEEK cage group. At early follow-up, groups had similar subsidence outcomes. Statistical significance was reached at the 8- to 12-week and 52-week follow-ups, demonstrating more subsidence in the PEEK cage group than the titanium cage group. rhBMP-2 usage was also highly correlated with higher subsidence rates at all 3 follow-up time points. Age was correlated with higher subsidence rates in univariate and multivariate analysis.
Conclusions:
Titanium cages were associated with lower subsidence rates than PEEK cages in this investigation. Usage of rhBMP-2 was also robustly associated with higher endplate subsidence. Each additional year of age correlated with an increased subsidence risk. Subsidence in LLIF is likely a response to a myriad of factors that include but are certainly not limited to cage material. Hence, the avoidance of titanium interbody implants secondary solely to concerns over a modulus of elasticity likely overlooks other variables of equal or greater importance.
Keywords:
DLIF; LLIF; LLIF = lateral lumbar interbody fusion; OLIF = oblique lateral interbody fusion; PEEK; PEEK = polyetheretherketone; PLIF = posterior lumbar interbody fusion; XLIF; comparative effectiveness; direct; extreme; lateral lumbar interbody fusion; polyetheretherketone; rhBMP-2 = recombinant human bone morphogenetic protein–2; subsidence; titanium.